The Impact of Private 5G and LPWAN – An Interview with WIN Connectivity

BehrTech Blog

The Impact of Private 5G and LPWAN on IoT

An Interview with Tim Dentry, CTO of WIN Connectivity


1. Tell us about WIN Connectivity. What is your focus and vision? What are your solutions? 

WIN Connectivity is a connectivity systems integrator and managed service provider. Specifically, we provide connectivity solutions oriented around IoT use cases that often utilize wireless media for mission accomplishment. For example, we provide in-building and external networking solutions in healthcare, hospitality, manufacturing and logistics, retail, and commercial real estate (smart buildings solutions). Our solutions encompass wired (fiber-to-the-edge) as well as wireless (neutral host carrier 5G, private 5G/cellular and LPWAN connectivity). We engage as either a Design-Build-Transfer model or using our Connectivity-as-a-Service, which is a Design-Build-Operate model that allows enterprises to consume our solution as a recurring operating cost (OpEx) rather than a CapEx model (or a blend of both, as the customer requires). 

2. How do you see the wireless technology landscape today? What are the biggest challenges?

The wireless landscape today is exciting, especially with the advancements of CBRS/private 5G, as well as proliferation of new and better LPWAN solutions such as mioty.  The US FCC making 6GHz available is also very exciting as it allows enterprises to harness more over-the-air power and bandwidth without having to get licensed.  While some might think that cellular wireless and LPWAN are mutually exclusive, they can actually work together to create a powerful IoT architecture.  Each of these solutions can be leveraged to build an overall IoT connectivity solution that ensures IoT adopters are able to realize the success criteria of their use cases.

Ensuring that the cost of the network does not outweigh the benefits of the network solution is one of the biggest challenges in today’s wireless technology landscape. Additionally, understanding the IoT technology itself in addition to connectivity and security, can be difficult and that’s where WIN Connectivity excels.  We make sense of the technology, security and availability requirements that cross multiple groups within an enterprise, whether it is cybersecurity, infrastructure and data governance. 

3. What value does LPWAN bring to IoT deployments?

LPWAN is a tried and true method for connecting IoT devices over long distances and challenging morphology. LPWAN ensures that massive IoT use cases can be realized because of the resilience of the radio systems and the frequency band.  Moreover, while industry experts discuss the IoT implications of cellular, such as 5G mmWave and CBRS, the reality is that the IoT system manufacturers must factor in the cost for a widely deployed IoT sensor to connect to those networks, or the manufacturers themselves must come up to speed.  With LPWAN, device manufacturers and IoT developers can already take advantage of this. If you think of this in the terms of the Gartner Hype Cycle, LPWAN is poised to accelerate out of the Trough of Disillusionment into the Slope of Enlightenment in less than two years, while 5G’s application for IoT is 5-10 years.  Additionally, unlicensed LPWAN does not require carrier/licensed spectrum (NB-IoT, LTE-M, etc) and thus makes it more efficient and affordable for enterprises who want to invest in IoT. 

4. How can LPWAN and 5G work together in Industry 4.0?

As mentioned, LPWAN and 5G, especially private 5G in the CBRS band,  can actually work together to create a powerful IoT architecture. This is particularly true in challenging environments where great distances often mean that a terrestrial backhaul adds additional cost and complexity in order to get LPWAN generated data from the gateway to an edge compute resource or the cloud.  Private 5G provides cost-effective, reliable over-the-air QoS for massive IoT data.   

5. What Industry 4.0 applications would benefit most from a private 5G and LPWAN connectivity solution?

Industry 4.0 applications that blend the concept of critical IoT and massive IoT to achieve business outcomes.  As an example, a manufacturing facility that is incorporating precise indoor localization and asset tracking, work environment monitoring (workplace safety), predictive maintenance for robotics and automation solutions and autonomous entities that require ultra-low latency to make real time decisions from massive amounts of collected data.  One of my favorite application areas for providing a layered connectivity approach using private 5G and LPWAN is connected farming.  Connected farming relies on sensors deployed over a large geographical area, and often these areas are themselves “not connected.”  Private 5G ensures that real-time or critical IoT apps combine, security and safety in growth farms and pastures, as well as inventory control for the upstream, midstream and distribution stages of farming. All of these use cases require a layered, accretive approach to communications.   

6. What are your predictions for advanced wireless networking in the next 3-5 years?

Private 5G will emerge as a natural alternative to enterprise wireless as the ecosystem becomes more compatible with the technology.  Meaning, as more vendors deploy devices with chipsets that natively support private 5G, you will see more deployments at scale.  Costs for the radio systems will drive downward, similar to what has happened with Wi-Fi, and the complexity to deploy these private 5G systems will also simplify and become truly more software-defined.  Finally, I believe that the industry will start to rationalize roaming seamlessly from public to private 5G networks, but this will require a significant amount of coordination in from the carriers and private network providers. 

Private 5G and LPWAN

Tim Dentry

CTO, WIN Connectivity

Tim is the WIN Connectivity CTO, bringing 20+ years of leadership experience in a variety of technology sectors, including Cloud Architecture and Operations, Cybersecurity, Network Infrastructure and Wireless.  His roles have included engineering, design, quality assurance, application development and infrastructure.  Tim has worked in both established communications companies such as MCI and Nokia (Lucent) and has also been a part of multiple early-stage startups such as Edgewater Networks, taking products from the design phase all the way to implementation and ongoing lifecycle management. Tim provides support for the broader WIN team by focusing on key areas such as technology evolution and selection, product development and design, as well as OSS/BSS and back-office solutions. Tim brings to WIN the experience of leveraging cloud infrastructure to deploy WIN’s technology solutions and is responsible for the lifecycle support of all of WIN’s technology offerings including Connectivity-as-a-Service. Tim is proud to have served in the Marine Corps for fourteen years, and is a graduate of Texas A&M University in College Station, Texas.



Subscribe to Our Monthly Blog Roundup

[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D0%22%7D” unique_id=”5e147370″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItNDctNDctNDcgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItZDdkZmU0Ij48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Get Next-Gen LPWAN with MYTHINGS Wireless Connectivity

Leave a Reply