LPWAN Basics: What Enables A Long Battery Life

LPWAN Battery Life

BehrTech Blog

LPWAN Basics: What Enables a Long Battery Life

We all know an intriguing quality of Low Power Wide Area Networks (LPWANs) is its ultra-low power consumption. Most LPWAN technologies claim that they can sustain a battery life of more than 10 years – making them the first “go-to” connectivity type when it comes to battery-operated IoT sensor networks.

But how can LPWANs achieve such a long battery life? In this blog, we’ll cover 3 main approaches.

1. Sleep Mode

LPWAN end nodes are programmed to be active only when a message needs to be transmitted. Outside this time, the transceivers are turned off and fall into deep sleep mode (“idle” time) whereby very minimal power is consumed. Assumed that a node is required to send only few messages (uplink) a day, power usage remains significantly low.

In bi-directional communication, end nodes have to also be awake to listen for downlink messages sent from the base station as well. A listening schedule can then be set up so that nodes only wake up at predefined times to receive downlink messages. Alternatively, nodes and base stations can be coordinated so that a downlink message is sent shortly after an uplink arrives. This helps reduce the time a node needs to be “on” for data reception.

2. Asynchronous Communication

Most LPWANs operating in the unlicensed spectrum employ asynchronous communication with lightweight Medium Access Control (MAC) protocols. For example, ALOHA random access protocol is commonly used. In ALOHA systems, a node accesses the channel and sends a message anytime without signaling the base station for permission or sensing current transmission by other nodes for coordination.

A major advantage of such random access protocols is that no complex control overhead is required. This drastically reduces power consumption and simplifies transceiver design. On the downside, asynchronous communication threatens to greatly hamper scalability. This is because data transmission is uncoordinated among nodes, which increases the chance of packet collision and data loss.

3. Star Topology

Thanks to their long physical range, LPWAN can be deployed in star topology while still effectively covering geographically vast areas. As explained in a previous blog, one-hop star topology saves more energy than the mesh topology of short-range wireless networks by orders of magnitude.

Is Battery Life the Same Among Different LPWAN Technologies?

The answer is definitely no. In fact, power consumption and the resulted battery life can vary significantly not only among different LPWAN technologies, but also among different deployment modes of the same technology. Below we look at 2 major attributable factors.

First, “on-air” radio time – a main indicator of power consumption during transmission – greatly differs across LPWAN systems. To be clear, transmission is the most energy-intensive activity of end nodes. On-air time is the total time a message travels from a node to the base station. Other things being equal, the shorter the on-air time, the lower the power consumption. If the same message is sent 3 times for redundancy, its total on-air time and power consumption triple.

Second, not all LPWANs adopt a combination of all 3 approaches discussed above. For example, to enhance Quality-of-Service (QoS), cellular LPWANs employ a synchronous protocol whereby end nodes have to signal the base station for permission to send a message (i.e. handshake). Besides imposing higher energy requirements due to excessive overhead, this process makes power consumption of each transmission and total battery life unpredictable. This is because it is difficult to predict how many times handshakes need to be performed until a message is allowed to be sent.

Recognized by ETSI, Telegram Splitting introduces a unique transmission method to minimize on-air time while resolving the trade-off between QoS and power consumption.

As a final note, 10 or even 20 years are actually a very long time for a battery lifespan, but to be realized a multitude of factors need to be thoroughly considered. Besides general conditions like message frequency and the type of battery used (ideally ones with low self-discharge rates), at the end of the day, choosing the right LPWAN technology really matters.

Subscribe to Our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D1%22%7D” unique_id=”5270c5ea” pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″ filter=”” filter_atts=”%7B%22filter_separator_color%22%3A%22%23DCDCDC%22%2C%22filter_source%22%3A%22category%22%2C%22filter_toggle_convert_to_dropdown%22%3Afalse%2C%22filter_size%22%3A%22large%22%2C%22parent%22%3Afalse%2C%22hidden%22%3Afalse%2C%22metaAssetsPath%22%3A%22https%3A%2F%2Fbehrtech.com%2Fwp-content%2Fuploads%2Fvisualcomposer-assets%2Felements%2FpostGridFilter%2FpostGridFilter%2Fpublic%2F%22%2C%22order%22%3A0%2C%22filter_gap%22%3A%2220%22%2C%22filter_active_shape%22%3A%225%22%2C%22filter_position%22%3A%22center%22%2C%22filter_active_color%22%3A%22%234C3AB3%22%2C%22filter_font_active_color%22%3A%22%23ffffff%22%2C%22filter_border_color%22%3A%22%23DCDCDC%22%2C%22metaIsElementLocked%22%3Afalse%2C%22filter_type_specific_terms%22%3A%7B%22enabled%22%3Afalse%2C%22values%22%3A%5B%5D%7D%2C%22filter_shape%22%3A%22none%22%2C%22filter_font_color%22%3A%22%23515162%22%2C%22metaElementAssets%22%3A%7B%7D%2C%22customHeaderTitle%22%3A%22%22%2C%22tag%22%3A%22postGridFilter%22%2C%22id%22%3A%2223229163%22%2C%22filter_toggle_all%22%3Atrue%2C%22filter_shape_color%22%3A%22%23FDFDFD%22%7D”]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Resolve The Trade-off Between QoS & Power Consumption 

Contact a MYTHINGS™ Platform Expert to learn more.

The Impact of Private 5G and LPWAN – An Interview with WIN Connectivity

Private 5G and LPWAN

BehrTech Blog

The Impact of Private 5G and LPWAN on IoT

An Interview with Tim Dentry, CTO of WIN Connectivity

[addtoany]

1. Tell us about WIN Connectivity. What is your focus and vision? What are your solutions? 

WIN Connectivity is a connectivity systems integrator and managed service provider. Specifically, we provide connectivity solutions oriented around IoT use cases that often utilize wireless media for mission accomplishment. For example, we provide in-building and external networking solutions in healthcare, hospitality, manufacturing and logistics, retail, and commercial real estate (smart buildings solutions). Our solutions encompass wired (fiber-to-the-edge) as well as wireless (neutral host carrier 5G, private 5G/cellular and LPWAN connectivity). We engage as either a Design-Build-Transfer model or using our Connectivity-as-a-Service, which is a Design-Build-Operate model that allows enterprises to consume our solution as a recurring operating cost (OpEx) rather than a CapEx model (or a blend of both, as the customer requires). 

2. How do you see the wireless technology landscape today? What are the biggest challenges?

The wireless landscape today is exciting, especially with the advancements of CBRS/private 5G, as well as proliferation of new and better LPWAN solutions such as mioty.  The US FCC making 6GHz available is also very exciting as it allows enterprises to harness more over-the-air power and bandwidth without having to get licensed.  While some might think that cellular wireless and LPWAN are mutually exclusive, they can actually work together to create a powerful IoT architecture.  Each of these solutions can be leveraged to build an overall IoT connectivity solution that ensures IoT adopters are able to realize the success criteria of their use cases.

Ensuring that the cost of the network does not outweigh the benefits of the network solution is one of the biggest challenges in today’s wireless technology landscape. Additionally, understanding the IoT technology itself in addition to connectivity and security, can be difficult and that’s where WIN Connectivity excels.  We make sense of the technology, security and availability requirements that cross multiple groups within an enterprise, whether it is cybersecurity, infrastructure and data governance. 

3. What value does LPWAN bring to IoT deployments?

LPWAN is a tried and true method for connecting IoT devices over long distances and challenging morphology. LPWAN ensures that massive IoT use cases can be realized because of the resilience of the radio systems and the frequency band.  Moreover, while industry experts discuss the IoT implications of cellular, such as 5G mmWave and CBRS, the reality is that the IoT system manufacturers must factor in the cost for a widely deployed IoT sensor to connect to those networks, or the manufacturers themselves must come up to speed.  With LPWAN, device manufacturers and IoT developers can already take advantage of this. If you think of this in the terms of the Gartner Hype Cycle, LPWAN is poised to accelerate out of the Trough of Disillusionment into the Slope of Enlightenment in less than two years, while 5G’s application for IoT is 5-10 years.  Additionally, unlicensed LPWAN does not require carrier/licensed spectrum (NB-IoT, LTE-M, etc) and thus makes it more efficient and affordable for enterprises who want to invest in IoT. 

4. How can LPWAN and 5G work together in Industry 4.0?

As mentioned, LPWAN and 5G, especially private 5G in the CBRS band,  can actually work together to create a powerful IoT architecture. This is particularly true in challenging environments where great distances often mean that a terrestrial backhaul adds additional cost and complexity in order to get LPWAN generated data from the gateway to an edge compute resource or the cloud.  Private 5G provides cost-effective, reliable over-the-air QoS for massive IoT data.   

5. What Industry 4.0 applications would benefit most from a private 5G and LPWAN connectivity solution?

Industry 4.0 applications that blend the concept of critical IoT and massive IoT to achieve business outcomes.  As an example, a manufacturing facility that is incorporating precise indoor localization and asset tracking, work environment monitoring (workplace safety), predictive maintenance for robotics and automation solutions and autonomous entities that require ultra-low latency to make real time decisions from massive amounts of collected data.  One of my favorite application areas for providing a layered connectivity approach using private 5G and LPWAN is connected farming.  Connected farming relies on sensors deployed over a large geographical area, and often these areas are themselves “not connected.”  Private 5G ensures that real-time or critical IoT apps combine, security and safety in growth farms and pastures, as well as inventory control for the upstream, midstream and distribution stages of farming. All of these use cases require a layered, accretive approach to communications.   

6. What are your predictions for advanced wireless networking in the next 3-5 years?

Private 5G will emerge as a natural alternative to enterprise wireless as the ecosystem becomes more compatible with the technology.  Meaning, as more vendors deploy devices with chipsets that natively support private 5G, you will see more deployments at scale.  Costs for the radio systems will drive downward, similar to what has happened with Wi-Fi, and the complexity to deploy these private 5G systems will also simplify and become truly more software-defined.  Finally, I believe that the industry will start to rationalize roaming seamlessly from public to private 5G networks, but this will require a significant amount of coordination in from the carriers and private network providers. 

Private 5G and LPWAN

Tim Dentry

CTO, WIN Connectivity

Tim is the WIN Connectivity CTO, bringing 20+ years of leadership experience in a variety of technology sectors, including Cloud Architecture and Operations, Cybersecurity, Network Infrastructure and Wireless.  His roles have included engineering, design, quality assurance, application development and infrastructure.  Tim has worked in both established communications companies such as MCI and Nokia (Lucent) and has also been a part of multiple early-stage startups such as Edgewater Networks, taking products from the design phase all the way to implementation and ongoing lifecycle management. Tim provides support for the broader WIN team by focusing on key areas such as technology evolution and selection, product development and design, as well as OSS/BSS and back-office solutions. Tim brings to WIN the experience of leveraging cloud infrastructure to deploy WIN’s technology solutions and is responsible for the lifecycle support of all of WIN’s technology offerings including Connectivity-as-a-Service. Tim is proud to have served in the Marine Corps for fourteen years, and is a graduate of Texas A&M University in College Station, Texas.

 

[addtoany]

Subscribe to Our Monthly Blog Roundup

[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D0%22%7D” unique_id=”5e147370″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItNDctNDctNDcgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItZDdkZmU0Ij48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Get Next-Gen LPWAN with MYTHINGS Wireless Connectivity

LPWAN and Environmental Monitoring: 5 Use Cases for Industry 4.0

LPWAN and Environmental Monitoring

BehrTech Blog

LPWAN and Environmental Monitoring: 5 Use Cases in Industry 4.0

[addtoany]

When talking about the Industrial Internet of Things (IIoT) or Industry 4.0, it’s not uncommon for manufacturers to interpret its value through the lens of factory automation. For many, a smart factory is a next-gen automation facility with advanced robotic equipment and enhanced real-time production control. High-bandwidth automation networks will have their place in the next industrial revolution, however they aren’t the only value creator. What’s most disruptive about IIoT is the ability to tap into unprecedented insights on the factory floor to optimize processes and boost productivity. And, a large part of these insights come from granular environmental wireless sensors.

Until recently, monitoring environmental conditions across industrial campuses had been prohibitive due to the costs and complexities of legacy wireless solutions. Environmental data is minimal in size, but the number of sensors needed to cover an entire facility is vast. Cellular and short-range solutions are too power-hungry and expensive for this type of low-bandwidth communications and therefore fail to scale with the required amount of end points.

Today, the advent of Low Power Wide Area Networks (LPWAN) introduces reliable and cost-effective connectivity for environmental monitoring. The technical design minimizes complexity and power footprint on the transceiver to lower device costs while enabling long battery life. Long range and a star topology additionally simplify deployment in large-scale, geographically dispersed facilities.

Environmental data delivers a whole new level of visibility into daily operations. By correlating contextual information with machine outputs and parameters, manufacturers can attain a holistic view of their production, identify bottlenecks and understand what is causing inefficiencies. Below are 5 examples of how LPWAN and environmental monitoring can help improve productivity and safety on the shop floor.

1. Quality Control

Ambient conditions have a significant influence on many industrial processes. For example, optimal air humidity and quality are essential for uniform coloring and painting tasks, alongside stable drying cycles and chemical reactions. Similarly, maintaining favorable room temperatures ensures precise fluid injections and optimal quality of 3D-printed components in industries like auto manufacturing. Having an environmental sensor network in place, manufacturers can oversee important ambient variables that impact production and respond timely to undesirable changes.

2. Worker Safety

Industrial workers are often exposed to a myriad of dangers. According to the International Labor Organization, work-related illnesses and diseases are estimated to incur USD$3 trillion of global economic losses each year. Monitoring workplace surroundings like air quality, combustible gases, heat, noise and radiation, can help better safeguard industrial workers. In conjunction with data from worker wearables, analysis of environmental data allows for identifying prolonged exposure to adverse conditions, out-of-tolerance incidents and potential workplace hazards. This enables managers to take counteractive measures accordingly to ensure worker’s health, safety and productivity.

3. Equipment Maintenance

A wide range of industrial and electronics equipment is subject to damage caused by unfavorable ambient conditions. Typically, excessive indoor humidity is conducive to condensation and corrosion of machinery, while too arid atmosphere leads to friction and electrostatic charge. Likewise, constant monitoring of the room temperature is vital to avoid equipment overheating that shortens its lifetime while presenting fire threats. Leveraging IoT sensors, businesses can have 24/7 insights into these critical environmental factors for effective regulation of heating and cooling devices.

4. Regulatory Compliance

In industries with treacherous extractive processes like mining, quarrying and oil and gas, rigorous environmental monitoring is integral in daily operations to minimize negative ecological implications. In this context, wireless sensors help automate monitoring tasks and deliver round-the-clock visibility to guarantee regulatory compliance. Specifically, they can report on underground water quality for early identification of acid drainage and prevention of widespread contamination. As another example, they can measure ground vibration, air quality and pressure during and after blasting to evaluate its impact on nearby residences and improve the future design.

5. Energy Management

Energy costs lie among the top operational expenses of industrial and commercial facilities. Despite the high overhead, statistics have shown that as much as 30 percent of the energy use is wasted. As companies constantly look to lower energy costs, granular IoT sensors offer an affordable approach to upgrade HVAC systems for higher efficiency. Instead of having a centralized and uniform HVAC setting, facility managers can leverage micro-zoned indoor climate data from IoT sensors to adjust heating and cooling on demand. Such a system helps circumvent the problem of HVAC overuse while optimizing occupancy comfort.

The power of IIoT goes far beyond what factory automation depicts. With ambient conditions having a significant impact on operational efficiency, safety and sustainability, IIoT is set to unlock this insight and open numerous opportunities to improve your business.

[addtoany]

Subscribe to Our Monthly Blog Roundup

[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D0%22%7D” unique_id=”5e147370″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItNDctNDctNDcgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItZDdkZmU0Ij48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Get Reliable and Scalable LPWAN for Environmental Monitoring

LPWAN and Bluetooth Low Energy: A Match Made in Networking Heaven

LPWAN and Bluetooth

BehrTech Blog

LPWAN and Bluetooth Low Energy: A Match Made in Networking Heaven

[addtoany]

Given its significant benefits in terms of reliability, minimal latency and security, wired communications has been the backbone of industrial control and automation systems. Nevertheless, as the new wave of IoT applications arises, we quickly see wired solutions reaching their limits.

Trenching cables is inherently cumbersome, capital- and labor-intensive, not to mention the fact that damage to wiring brings the risk of production downtime. Due to the plethora of proprietary wiring protocols, any additions or modifications to the architecture is deemed costly and could even entail a “rip-and-replace” of cables and conduits. The bulky and expensive wired infrastructure thus limits the number of connected endpoints and is highly constrained in terms of range and network capacity.

In direct comparison, wireless networks require far fewer hardware components, and less installation and maintenance costs. As there aren’t any physical cables involved, sensors can be easily attached to mobile assets to tap into a new host of operational data. On top of that, wireless networks make data collection in hard-to-access and hazardous environments possible and can flexibly expand to meet your changing business needs.

The central value around IoT is the unprecedented visibility into existing processes, equipment and production environment that empowers strategic decision-making. Think of applications used for asset maintenance, facility management and worker safety. As opposed to high-bandwidth, time-sensitive communications, many IoT sensor networks send small-sized telemetry data periodically or only when abnormalities are identified. Of even greater importance is their ability to connect vast numbers of distributed field assets and devices to bring granular business insights. With this in mind, wireless connectivity is often the better option to bring your physical “things” online.

Given the bewildering range of wireless solutions available in the market today, choosing the right technology is no easy task. Not all wireless technologies are created equal and not all can manage every use case. For this reason, there is a growing demand in multiprotocol support. Devices that combine the complementary strengths of different wireless standards and frequencies in one design, such as LPWAN and Bluetooth, makes it feasible for more complex sensor networks to exist.

LPWAN and Bluetooth Low Energy: A Match Made in Networking Heaven

Bluetooth’s ubiquity and global, multi-vendor interoperability has made it the core short-range technology for industrial and commercial IoT projects. Bluetooth Low-Energy (BLE) enabled devices are often used in conjunction with electronic devices, typically smartphones that serve as a hub for transferring data to the cloud. Nowadays, BLE is widely integrated into fitness and medical wearables (e.g. smartwatches, glucose meters, pulse oximeters, etc.) as well as Smart Home devices (e.g. door locks), where data is conveniently communicated to and visualized on smartphones. The release of the Bluetooth Mesh specification in 2017 aimed to enable a more scalable deployment of BLE devices, particularly in retail contexts. Providing versatile indoor localization features, BLE beacon networks have been used to unlock new service innovations like in-store navigation, personalized promotions, and content delivery.

The challenge with BLE-enabled devices is that they must have a way to reliably transmit data over a distance. The reliance on traditional telecommunications infrastructure like Wi-Fi or cellular has put growth limitations on these sensor networks. Long range communication is often a significant obstacle in industrial settings because Wi-Fi and cellular networks are not always available or reliable where industrial facilitates or equipment are located. This is why a complementary, long-range technology is so important.

Geared for low-bandwidth, low computing end nodes, the newer LPWAN solutions offer highly power-efficient and affordable IoT connectivity in vast, structurally dense environments. No current wireless classes can beat LPWAN when it comes to battery life, device and connectivity costs, and ease of implementation. As the name implies, LPWAN nodes are designed to operate on independent batteries for years, rather than days as with other wireless solutions. They can also transmit over many miles while providing deep penetration capability to connect devices at hard-to-reach indoor and underground locations.

In this context, LPWAN extends the power efficient and high data rate capabilities of BLE devices by serving as a reliable and robust backhaul for long range communication in both complex indoor environments and remote locations. This increases deployment flexibility, reduces the need for costly and complex network infrastructure requirements and makes it more feasible for massive-scale sensor networks to exist.

You Might Also Like : Introducing the new mioty BLE Dual Stack

 

For example, LPWAN and Bluetooth Low Energy together, enable the deployment of IoT networks in a significantly broader geographic area. This flexibility is increasingly important as more IoT sensor networks are deployed in far flung, industrial locations like remote mining, oil and gas and manufacturing facilities.

Together, they also cost-effectively enable critical indoor applications like asset tracking and consumables monitoring that require reliable connectivity for a vast number of end-nodes. The physical barriers and obstructions as well as co-channel interference with other systems often present in indoor environments can create challenges for reliable data communication. However, the long-range, deep indoor penetration and high interference immunity offered by next-gen LPWAN technologies ensures reliable data connection in any large industrial campuses or smart buildings.

Wrapping Up

The success of any IoT deployment is dependent on reliable connectivity, which remains a huge obstacle for numerous industries like mining, manufacturing, oil gas and smart buildings. These industries are faced with complex and often remote environments where traditional wired and wireless connectivity options are not possible as standalone technologies. That’s why combining different technologies that cover each other’s drawbacks while also adding on top their individual advantages is critical for building a reliable and robust IoT network. The combination of LPWAN and Bluetooth Low Energy in one design, increases flexibility and integration and opens up a new world of exciting industrial and commercial applications. 

[addtoany]

Subscribe to Our Monthly Blog Roundup

[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”5e147370″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItNDctNDctNDcgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItZDdkZmU0Ij48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Build Scalable and Flexible Networks with the mioty BLE Dual Stack