LPWAN Basics: What Enables A Long Battery Life

LPWAN Battery Life

BehrTech Blog

LPWAN Basics: What Enables a Long Battery Life

We all know an intriguing quality of Low Power Wide Area Networks (LPWANs) is its ultra-low power consumption. Most LPWAN technologies claim that they can sustain a battery life of more than 10 years – making them the first “go-to” connectivity type when it comes to battery-operated IoT sensor networks.

But how can LPWANs achieve such a long battery life? In this blog, we’ll cover 3 main approaches.

1. Sleep Mode

LPWAN end nodes are programmed to be active only when a message needs to be transmitted. Outside this time, the transceivers are turned off and fall into deep sleep mode (“idle” time) whereby very minimal power is consumed. Assumed that a node is required to send only few messages (uplink) a day, power usage remains significantly low.

In bi-directional communication, end nodes have to also be awake to listen for downlink messages sent from the base station as well. A listening schedule can then be set up so that nodes only wake up at predefined times to receive downlink messages. Alternatively, nodes and base stations can be coordinated so that a downlink message is sent shortly after an uplink arrives. This helps reduce the time a node needs to be “on” for data reception.

2. Asynchronous Communication

Most LPWANs operating in the unlicensed spectrum employ asynchronous communication with lightweight Medium Access Control (MAC) protocols. For example, ALOHA random access protocol is commonly used. In ALOHA systems, a node accesses the channel and sends a message anytime without signaling the base station for permission or sensing current transmission by other nodes for coordination.

A major advantage of such random access protocols is that no complex control overhead is required. This drastically reduces power consumption and simplifies transceiver design. On the downside, asynchronous communication threatens to greatly hamper scalability. This is because data transmission is uncoordinated among nodes, which increases the chance of packet collision and data loss.

3. Star Topology

Thanks to their long physical range, LPWAN can be deployed in star topology while still effectively covering geographically vast areas. As explained in a previous blog, one-hop star topology saves more energy than the mesh topology of short-range wireless networks by orders of magnitude.

Is Battery Life the Same Among Different LPWAN Technologies?

The answer is definitely no. In fact, power consumption and the resulted battery life can vary significantly not only among different LPWAN technologies, but also among different deployment modes of the same technology. Below we look at 2 major attributable factors.

First, “on-air” radio time – a main indicator of power consumption during transmission – greatly differs across LPWAN systems. To be clear, transmission is the most energy-intensive activity of end nodes. On-air time is the total time a message travels from a node to the base station. Other things being equal, the shorter the on-air time, the lower the power consumption. If the same message is sent 3 times for redundancy, its total on-air time and power consumption triple.

Second, not all LPWANs adopt a combination of all 3 approaches discussed above. For example, to enhance Quality-of-Service (QoS), cellular LPWANs employ a synchronous protocol whereby end nodes have to signal the base station for permission to send a message (i.e. handshake). Besides imposing higher energy requirements due to excessive overhead, this process makes power consumption of each transmission and total battery life unpredictable. This is because it is difficult to predict how many times handshakes need to be performed until a message is allowed to be sent.

Recognized by ETSI, Telegram Splitting introduces a unique transmission method to minimize on-air time while resolving the trade-off between QoS and power consumption.

As a final note, 10 or even 20 years are actually a very long time for a battery lifespan, but to be realized a multitude of factors need to be thoroughly considered. Besides general conditions like message frequency and the type of battery used (ideally ones with low self-discharge rates), at the end of the day, choosing the right LPWAN technology really matters.

Subscribe to Our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D1%22%7D” unique_id=”5270c5ea” pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″ filter=”” filter_atts=”%7B%22filter_separator_color%22%3A%22%23DCDCDC%22%2C%22filter_source%22%3A%22category%22%2C%22filter_toggle_convert_to_dropdown%22%3Afalse%2C%22filter_size%22%3A%22large%22%2C%22parent%22%3Afalse%2C%22hidden%22%3Afalse%2C%22metaAssetsPath%22%3A%22https%3A%2F%2Fbehrtech.com%2Fwp-content%2Fuploads%2Fvisualcomposer-assets%2Felements%2FpostGridFilter%2FpostGridFilter%2Fpublic%2F%22%2C%22order%22%3A0%2C%22filter_gap%22%3A%2220%22%2C%22filter_active_shape%22%3A%225%22%2C%22filter_position%22%3A%22center%22%2C%22filter_active_color%22%3A%22%234C3AB3%22%2C%22filter_font_active_color%22%3A%22%23ffffff%22%2C%22filter_border_color%22%3A%22%23DCDCDC%22%2C%22metaIsElementLocked%22%3Afalse%2C%22filter_type_specific_terms%22%3A%7B%22enabled%22%3Afalse%2C%22values%22%3A%5B%5D%7D%2C%22filter_shape%22%3A%22none%22%2C%22filter_font_color%22%3A%22%23515162%22%2C%22metaElementAssets%22%3A%7B%7D%2C%22customHeaderTitle%22%3A%22%22%2C%22tag%22%3A%22postGridFilter%22%2C%22id%22%3A%2223229163%22%2C%22filter_toggle_all%22%3Atrue%2C%22filter_shape_color%22%3A%22%23FDFDFD%22%7D”]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Resolve The Trade-off Between QoS & Power Consumption 

Contact a MYTHINGS™ Platform Expert to learn more.

5 Common Myths about LPWAN for IoT Debunked

LPWAN for IoT

BehrTech Blog

5 Common Myths about LPWAN for IoT Debunked

With 2021 expected to witness an uprising of massive machine-to-machine communication, Low Power Wide Area Networks (LPWAN) are no doubt a central topic among the wireless community. Still, industrial and commercial users who are unfamiliar with this wireless technology might struggle to understand the current landscape and how different technologies compare. To help you get you crack the LPWAN code, we’ve debunked 5 common myths around LPWAN for the Internet of Things (IoT).

LPWAN for IoT

1. All LPWAN technologies are equally low-power

The term Low Power Wide Area is self-explanatory. Even if you haven’t heard of LPWAN, you probably could still figure out that it’s designed for low-power IoT applications. However, don’t fall into the trap that energy consumption is uniform across LPWAN solutions. While all promise a battery life that spans years, there’s a big gap in power efficiency among different technologies under the same conditions. Often, this gap is boiled down to two major factors: on-air radio time of each message; and the amount of packet overhead required. Technologies that send the same message several times for redundancy multiply total on-air time and power consumption respectively. Also, extra energy spent on handshaking quickly depletes the power resource.

Find out more: What Enables a Long Battery Life in LPWAN

2. LPWANs and other wireless solutions are mutually exclusive

There’s a lot of comparison between LPWANs and legacy wireless technologies when it comes to different IoT use cases. Nonetheless, it’s important to know that LPWAN networks do not live in a bubble. Quite the contrary, many scenarios benefit from enhanced flexibility and functionality brought by a hybrid wireless architecture. LPWAN and 5G, especially private 5G in the CBRS band,  can actually work together to create a powerful IoT architecture. This is particularly true in challenging environments where great distances often mean that a terrestrial backhaul adds additional cost and complexity in order to get LPWAN generated data from the gateway to an edge compute resource or the cloud.  Private 5G provides cost-effective, reliable over-the-air QoS for massive IoT data.  Likewise, LPWAN extends the power efficient and high data rate capabilities of short range technologies such as BlueTooth Low Energy devices by serving as a reliable and robust backhaul for long range communication in both complex indoor environments and remote locations. 

3. Most LPWAN solutions are standard-based

As the term “standard” gains significant traction in the IoT age, vendors are looking to make their solution a standard. You could lightly claim a proprietary technology a standard just by publishing its technical specifications for third-party development. But, this doesn’t ratify the quality and long-term viability of the technology. Not to mention, in some cases, like the LoRa network, only part of the protocol stack is truly open. While the MAC layer (LoRaWAN) is made public, the PHY layer (LoRa) is entirely proprietary and tied to a single chipset vendor.

On the other hand, few LPWAN technologies have been standardized and endorsed by impartial, established Standard Development Organizations. One is cellular LPWAN solutions that implement 3GPP standards, and the other is Telegram Splitting as specified in the ETSI standard on Low Throughput Networks – TS 103 357. By going through a formal, rigorous evaluation process, these technologies are verified for convincing, future-proof performance in various network criteria, while coming with a transparent, robust technical framework to fuel vertical and horizontal interoperability.

4. Public LPWANs are omnipresence and borderless

The appeal of ubiquitous coverage offered by public LPWAN might be too good to be true. Trans-border roaming is still a major challenge for technologies like LoRa and NB-IoT, which depend on roaming agreements between different telco providers. And, even if roaming isn’t a prerequisite for many use cases, the coverage of public LPWAN within national boundaries is still far from omnipresence. Urban areas are often less of a concern, but remote industrial areas require extra caution. You’ll need to look at the network operator’s coverage map and make sure your facility doesn’t overlap with the “blind spots”.

Also, when it comes to NB-IoT, the lack of support for cell handover is another factor to consider. If a device is moved out of its assigned cell, it must execute the whole registration process again, which can take up to 30 seconds. As this is cumbersome and power-consuming, NB-IoT pertains more to stationary use cases.

5. Unlicensed-spectrum LPWANs aren’t reliable

For a long time, the unlicensed spectrum has been associated with reduced radio performance and limited scalability due to the high interference in a shared band. Due to low-cost and high-flexibility benefits, the unlicensed spectrum is now a go-to option for many radio developers; but this notoriety doesn’t easily fade away. When it comes to LPWANs and their simplified MAC layer design, reliability concerns further intensify. For this reason, many would advocate for the growing uses of cellular LPWANs in demanding industrial applications. The truth is, with a technology designed from the ground up for interference immunity, you can get the best of both worlds. Such a solution provides robust, scalable and cost-effective connectivity while eliminating the dependency on network operators.

Predicted to generate a market value of $65 billion by 2025, LPWAN is quickly establishing its place in the IoT space. With a lot of excitement around this wireless class, it’s important to understand the truths behind existing solutions, if they suit your use case and what the whole architecture will look like.

Subscribe to our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D1%22%7D” unique_id=”0226f0cc” pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″ filter=”” filter_atts=”%7B%22id%22%3A%22406c45cb%22%2C%22order%22%3A0%2C%22parent%22%3Afalse%2C%22tag%22%3A%22postGridFilter%22%2C%22customHeaderTitle%22%3A%22%22%2C%22metaAssetsPath%22%3A%22https%3A%2F%2Fbehrtech.com%2Fwp-content%2Fuploads%2Fvisualcomposer-assets%2Felements%2FpostGridFilter%2FpostGridFilter%2Fpublic%2F%22%2C%22hidden%22%3Afalse%2C%22metaElementAssets%22%3A%7B%7D%2C%22metaIsElementLocked%22%3Afalse%2C%22filter_source%22%3A%22category%22%2C%22filter_type_specific_terms%22%3A%7B%22enabled%22%3Afalse%2C%22values%22%3A%5B%5D%7D%2C%22filter_toggle_all%22%3Atrue%2C%22filter_position%22%3A%22center%22%2C%22filter_gap%22%3A%2220%22%2C%22filter_size%22%3A%22large%22%2C%22filter_shape%22%3A%22none%22%2C%22filter_active_shape%22%3A%225%22%2C%22filter_shape_color%22%3A%22%23FDFDFD%22%2C%22filter_active_color%22%3A%22%234C3AB3%22%2C%22filter_border_color%22%3A%22%23DCDCDC%22%2C%22filter_separator_color%22%3A%22%23DCDCDC%22%2C%22filter_font_color%22%3A%22%23515162%22%2C%22filter_font_active_color%22%3A%22%23ffffff%22%2C%22filter_toggle_convert_to_dropdown%22%3Afalse%2C%22inner%22%3Atrue%7D”]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Want to learn more about LPWAN for IoT?

4 Technical Approaches to Ensure Interference Resilience in LPWAN

Interference resilience in LPWAN

BehrTech Blog

4 Technical Approaches to Ensure Interference Resilience in LPWAN

For Low-Power Wide Area Networks (LPWAN) operating in the license-free spectrum, a major advantage is low network costs. Nevertheless, given the exponential increase in connected devices, the shared limited radio resources are becoming more and more congested. To enhance Quality-of-Service (QoS) and network scalability, ensuring interference resilience in LPWAN is a major undertaking.

Understanding Interference in License-Free Bands

Interference refers to the unwanted collision of two radio signals in the same frequency – causing data loss. Interference in license-free LPWAN, falls into two main categories:

1. Inter-system interference refers to disturbances caused by radio signals from other systems. As the license-free spectrum is available for everyone, multiple technologies co-exist and access the same frequency resources. For example, most LPWAN technologies including MIOTY, LoRa, and Sigfox commonly use the sub-gigahertz industrial, scientific and medical (ISM) radio bands. Similarly, Ingenu – another LPWAN player – shares the crowded 2.4 GHz band with Wi-Fi, Bluetooth, Zigbee, among others.

2. Intra-system interference, or self-interference, refers to disturbances caused by devices operating within the same network, such as within a MIOTY network or within a LoRa network. Self-interference is mainly attributable to asynchronous communication using ALOHA scheme in many LPWAN systems. Though greatly lowering power consumption, pure ALOHA-based networks generate significant self-interference due to uncoordinated, random data transmission among end devices.

Inter- and intra-system interference threaten to deteriorate network performance and hamper scalability.

Technical Approaches to Interference Resilience in LPWAN

Amid these challenges, a strong system design is key to ensuring high interference immunity in LPWAN. Below we explain four technical approaches to controlling and mitigating inter- and/or intra-system interference.

1.  Utilizing (ultra-) narrow bandwidths

Compared to wideband approaches based on spread spectrum, (ultra-) narrowband technology alleviates the problem of intra-system interference. Each narrowband message uses a very small bandwidth, allowing for high spectrum efficiency. More messages can hence fit into an assigned frequency band without overlapping with each other, enabling more devices to effectively operate at the same time without interfering with each other. This improves overall network capacity and system scalability. Minimal bandwidth usage additionally reduces noise level experienced by each signal.  

Think of narrow band messages as motorbikes and wideband messages as trucks. On a highway, we can afford a much larger number of motorbikes than trucks without incurring traffic accidents.

2.  Reducing on-air time

In many LPWAN systems, the transmission time or on-air time of a signal can last up to 2 seconds. This is problematic since messages with long on-air time are much more prone to collisions. Longer transmission times also increases opportunities for malicious and sophisticated attacks like selective jamming.

3.  Frequency hopping

By rapidly switching a message among different channels during transmission, frequency hopping improves resistance against inter-system interference. Constant frequency change helps avoid congested channels and makes signals difficult to intercept. On the downside, frequency hopping is very spectral inefficient as larger bandwidth usage is required. Wideband signals transmitted at low rates can easily overlap with each other, causing self-interference and data loss.

4.  Forward Error Correction (FEC)

Applying channel coding or forward error correction allows for detection and correction of transmission errors due to noise, interference, and fading. In unreliable or noisy channels, FEC helps reduce packet error rate and avoid costly data re-transmissions.

So far, no traditional LPWAN systems have succeeded in leveraging all of these approaches in their system design. LPWAN using an (ultra-) narrowband approach offers high spectrum efficiency, but extends on-air time due to very slow data rates. Spread spectrum systems capitalize on the benefits of frequency hopping, but suffer from self-interference and scalability issues due to wide bandwidth usage.

By splitting an ultra-narrowband message into multiple smaller sub-packets and distributing them at pseudo-random time and frequency patterns, Telegram Splitting brings the benefits of all four mentioned approaches to one system. Thanks to its much smaller size, each sub-packet has an extremely short on-air time of only 15 milliseconds. The chance of colliding with other inter- and intra-system signals is hence drastically minimized. Additionally, built-in FEC enables successful message retrieval even if up to 50% of sub-packets are lost along the way.

With the ever-growing device density and communication traffic in the IoT era, interference resilience in LPWAN will continue to be a top priority; as will selecting a robust technology without compromising cost and power efficiency.

Subscribe to Our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”7f9c9f03″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Secure Interference Resilience in LPWAN with MYTHINGS

Contact a MYTHINGS™ Platform Expert for more information or to book a demo.

IoT for Fleet Management: The Rise of LPWAN

IoT for Fleet Management

BehrTech Blog

IoT for Fleet Management: The Rise of LPWAN

From manufacturing, mining, oil and gas to construction and agriculture, fleets of heavy machinery and mobile equipment are among the most critical assets across industries. IoT for fleet management presents enormous opportunities to augment Overall Equipment Effectiveness (OEE). In the data-driven economy, Low Power Wide Area Networks (LPWANs) emerge as a new viable means of IoT connectivity that Original Equipment Manufacturers (OEM) and industrial companies can’t miss out on.

IoT for Fleet Management

The Role of LPWAN for Fleet Management

To stay connected, industrial mobile equipment relies on wireless technologies. Traditional fleet telematics solutions employ cellular networks for tracking and measuring fleet utilization. However, this approach is expensive as it requires every machine or vehicle to have its own cell plan.

Cellular-based telematics can pay off in transportation and logistics applications where connectivity that transcends territorial boundaries, is a must. However, industrial fleet management in enclosed areas such as factories, open-pit mines, construction sites, and farms, calls for a more cost-effective solution. Furthermore, cellular coverage is far from omnipresent, leaving significant gaps in remote and underground locations.

Purpose-built for low-bandwidth, long-distance sensor data transmission, LPWAN is a new versatile solution to connect cross-industry mobile assets. Providing a range of more than 10 km line-of-sight, private LPWA networks can be flexibly deployed to enable reliable coverage in remote, large-scale industrial campuses. Thanks to very low power consumption, LPWAN additionally allows for many years of battery life – a major benefit as mobile assets are often nowhere near a power source.

With legacy equipment in place, operators are now looking for a “plug-and-play” IoT solution to avoid an expensive fleet overhaul. LPWAN is easy to deploy and retrofit in existing equipment and can be operated at a fraction of the cost of cellular alternatives providing operators with the best possible Return-on-Investment from IoT solutions.

IoT for Fleet Management: 3 Impactful Applications

LPWAN-enabled sensor networks collect information about equipment usage, speed, emission, location and more. These data are then forwarded to the cloud for long-term diagnostics and predictive analysis. Actionable insights can be distilled to help companies optimize productivity, compliance and safety, and ultimately improve their bottom line.

1. Condition Monitoring and Predictive Maintenance

Predictive analytics enables fleet operators to stay on top of maintenance by anticipating and correcting failures before they even occur. Built-in sensors transmit key health and operational parameters of tires, hydraulics, engine and other components of mobile equipment. Using automated alerts, operators are informed of any intolerable deviations that hint at impending or abnormal conditions. This allows for advanced planning of oil and part replacements, along with reparation scheduling to avoid costly downtime.

2. Asset Optimization

Under-utilized machinery with excessive idling time results in wasted fuel while incurring additional fixed equipment costs. Data about idle times captured by telematics sensors allow operators to make informed decisions about the optimal size and composition of their fleets, and whether to buy or lease. Unauthorized usage outside operational hours can be additionally detected to avoid any tampering or theft attempts. Overall, asset utilization data contribute to improving OEE and ultimately, net profit margins.

IoT for Fleet Management
Source: https://www.businessinsider.de/caterpillar-is-embracing-the-iot-to-improve-productivity-2017-11?r=US&IR=T

3. Emission Control and Fuel Consumption Management

As climate change continues to become a top global concern, fleet operators are facing increasing regulations and pressure to curb their carbon footprints. In underground mines, emission control is also critical in sustaining a secure work environment for miners.

With connected equipment powered by LPWAN, operators can monitor exhaust emissions to ensure compliance with environmental and safety regulations. Likewise, information about vehicle status and operating patterns, reveals bottlenecks and enables optimization of fuel usage. For example, low tire pressure can increase fuel consumption and reduce gas mileage.

Final Thoughts: Which LPWAN Technology to Go For?

Not all LPWAN technologies can equally cater to industrial fleet management applications. For example, although supporting end nodes moving at high speed is an absolute prerequisite, many existing technologies are missing this feature. Moreover, harsh industrial environments like underground mines pose great challenges in securing reliable connection due to extreme depths and hostile topography.

In the world of industrial fleet management, the right LPWAN technology must balance core criteria in terms of industry-grade robustness and security, deep penetration, mobility, and scalability.

Subscribe to Our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”1b7649d4″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItNDctNDctNDcgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi00Ny00Ny00NyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Get Wireless IoT Connectivity for Fleet Management

Contact a MYTHINGS™ Platform Expert for more information.

[Infographic] 16 Stats about IoT in Oil & Gas

IoT in oil and gas

BehrTech Blog

16 Stats about IoT in Oil and Gas

Over the past decade, the speed of innovation has accelerated. From sensors to wireless connectivity to data analytics, IoT has infiltrated nearly every industry. The oil and gas industry is no exception, embracing digitization at a faster rate, and as a result seeing dramatic improvements in efficiency and safety that will further transform the industry.

Prior to digitization, oil and gas drilling and completions operators had predominately low-tech methods for monitoring and managing their processes. Visual inspections and manual estimations created large margins for error and also put the safety of personnel and the environment at risk.

Now operators have analytics and sensors at their disposal that not only offer the ability to automate costly, error-prone tasks but also offer operators the ability to capture vast amounts of rich data to inform operations and vastly improve their bottom line.

The infographic below highlights 16 important facts you should know about IoT in oil and gas.

Subscribe to our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%26amp%3Boffset%3D1%22%7D” unique_id=”16e59292″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTQ3LTQ3LTQ3IHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLTRlNGU0ZSB2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tYXV0aG9yLWNvbG9yLWZmY2UwMCB2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YS1jb2xvci1iLTQ3LTQ3LTQ3Ij48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Get Robust and Scalable IoT Connectivity for Oil & Gas

Interoperability: The Secret to a Scalable IoT Network

Scalable IoT

BehrTech Blog

Interoperability: The Secret to a Scalable IoT Network

IoT is an ecosystem game. No single technology in the market can deliver a complete, end-to-end IoT solution on its own. From connectivity, sensors and gateways to the cloud and application systems, an IoT architecture is composed of various components working in concert with each other. While ensuring a seamless data flow along the IoT value chain is critical, it is only half of the battle.

Today’s exploding number of IoT vendors has turned the IoT ecosystem into a highly complex landscape. To address multiple applications and challenges, an IoT infrastructure often needs to incorporate cross-domain hardware and application systems. Likewise, it must be flexible enough to effectively integrate future devices that may come with different hardware models. Beyond vertical integration within a specific industry or application, the diverse nature of the digital ecosystem means that horizontal interoperability between different devices and systems will also be critical to the success of a scalable IoT network.

A Lack of IoT Interoperability

Despite its utmost importance, IoT interoperability for many vendors is still a goal to work towards. A large number of existing IoT solutions are proprietary and designed to operate only within a pre-defined hardware or infrastructure environment. Examples include protocols tied to vendor-specific chipsets or wireless connectivity bound to a single third-party managed backend. The lack of IoT interoperability means that data can’t be effectively exchanged across disparate, sometimes overlapping devices and systems.

From the IoT adopters’ perspective, these closed ecosystems, or better named as silos, pose multiple problems. They hamper effective integration of new IoT devices and solutions that can tackle a wider range of operational issues. Supporting heterogeneous IoT infrastructures for different applications can quickly inflate costs and complexity beyond what companies can handle.

Vendor lock-in also deprives users of control over their data, network uptime and infrastructure management, while preventing them from switching to more cost-effective hardware options in the future. Technical instability is another potential issue, given the inherent risk that the vendor fails to deliver the agreed services and product functionality. This results in impaired Quality-of-Service and network scalability or even security holes.

Scalable IoT

Designing an IoT Architecture for Interoperability

The best way to circumvent these challenges is to prepare your IoT networks for interoperability from the start. Despite today’s highly fragmented IoT landscape, here are three rules of thumb for IoT connectivity that will help navigate your network design.

1. Open, Industry Standards

Solutions incorporating proven standards are built upon an open, universal framework recognized by Standard Development Organizations (SDO). Besides assured Quality-of-Service, open standards foster global transparency and consistency, eliminating incompatible variations in technical design and product development. This fuels worldwide adoption, cross-vendor support and interoperability in the long run. Adopting standard-based protocols, specifically, allows you to benefit from a growing portfolio of compatible off-the-shelf hardware across verticals. You can also avoid the risk of backward incompatibility due to any strategic changes by the proprietary vendor.

2. Software-driven Technologies

In industrial environments, IoT devices often abide by a rigorous set of safety and reliability regulations. Deploying wireless solutions with a hardware-driven approach is challenging in this regard, as you are bound to a certain device type and must depend on the respective vendor(s) to go through the certification process. Software-driven technologies, on the other hand, can be flexibly plugged in any legacy devices and infrastructure that already meet your operational requirements – whether sensors or industry PCs.

3. Open Interfaces

IoT interoperability on the application layer entails effective data transfer to different user’s application systems and servers. Open sourced messaging protocols like MQTT or CoAP and Application Programming Interfaces (APIs) based on RESTful principles are key drivers of cross-application interoperability. In a private network architecture, having these open interfaces natively embedded in the IoT gateway enables direct data transfer to your preferred backend for analytics and visualization, without relying on a third-party managed server.

To wrap it up, interoperability is key to robust and scalable IoT network, and requires particular attention in your architecture design. Leveraging a standard-based, software-driven communication platform with built-in open interfaces allows for easy deployment in legacy environments while ensuring long-term interoperability with cross-vertical hardware and systems.

Subscribe to our Monthly Blog Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”1d056b6e” pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLTRlNGU0ZSB2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tYXV0aG9yLWNvbG9yLWZmY2UwMCB2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YS1jb2xvci1iLTMzLTMzLTMzIj48ZGl2IGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0taW1hZ2UiIHN0eWxlPSJiYWNrZ3JvdW5kLWltYWdlOnVybCh7e2ZlYXR1cmVkX2ltYWdlX3VybH19KSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij48L2E%2BPC9kaXY%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWNvbnRlbnQiPjxwIGNsYXNzPSJ2Y2UtcG9zdC1kZXNjcmlwdGlvbi0tbWV0YSI%2BPHNwYW4%2BUG9zdGVkIDwvc3Bhbj48c3BhbiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtZGF0ZSI%2Bb24gPHRpbWUgZGF0ZXRpbWU9Int7cG9zdF9kYXRlX2dtdH19Ij57e3Bvc3RfZGF0ZX19IDwvdGltZT48L3NwYW4%2BPC9wPjxoMyBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLXRpdGxlIj48YSBocmVmPSJ7e3Bvc3RfcGVybWFsaW5rfX0iPnt7cG9zdF90aXRsZX19PC9hPjwvaDM%2Be3tzaW1wbGVfcG9zdF9kZXNjcmlwdGlvbl9leGNlcnB0fX08L2Rpdj48L2Rpdj48L2FydGljbGU%2BPC9kaXY%2B[/vcv_posts_grid]

Build a Scalable IoT Network with MYTHINGS

IoT Metropolitan Area Networks: A Quick Start Guide

Metropolitan Area Networks

BehrTech Blog

IoT Metropolitan Area Networks: A Quick Start Guide

[addtoany]

The Internet of Things (IoT) ecosystem is expanding on a global scale. Buildings, cities and industries are undergoing a significant transformation as IoT promises to bring business operations and people’s quality of life to a whole new level. Thanks to ubiquitous wireless connectivity, it’s now possible to turn virtually everything – as simple as a waste bin or a consumable dispenser – into a smart device. Even our surroundings now have a “voice” to report on their current conditions so necessary changes could be made to optimize health and comfort.

Communication protocols have ceaselessly developed to keep up with the insatiable demand for device interconnection, and so does the network type. In our daily work and home environments, Personal and Local Area Networks (PAN & LAN) are almost omnipresent. Aggregating multiple LANs, we have the Campus Area Networks. And, on a city scale, we are moving towards what’s known as Metropolitan Area Networks (MAN). While MAN isn’t necessarily a brand-new concept, its implications and use are drastically evolving as IoT and next-gen connectivity emerge. If you’re an active player in the IoT space, it’s worth exploring what this network type means and the multifold advantages it has to offer.

[bctt tweet=”While a Metropolitan Area Network isn’t necessarily a new concept, its implications and use are drastically evolving as IoT and next-gen connectivity emerge.”]

What Is A Metropolitan Area Network?

As the name implies, MAN signifies a single network that serves a large urban area and spans tens of kilometers in range. Such an area could be a combination of multiple buildings and campuses or dispersed throughout a metropolis. Traditionally, MAN infrastructure is largely underpinned by a nexus of Ethernet and fiber cable lines that aim to deliver high-speed internet access for urban residents. Nevertheless, today, there’s much more to a MAN architecture than what it used to be.

Metropolitan Area Networks in the IoT Age

With the advent of IoT, new wireless technology like Low Power Wide Area Networks (LPWAN), has seen dramatic growth in recent years. Positioned as an IoT accelerator, LPWAN comes with an extensive radio range of many kilometers together with ultra-low power requirements – a unique combination not available with previous wireless classes but highly critical for large-scale deployments of modular, battery-operated smart sensors. As such, LPWAN is quickly penetrating commercial and industrial marketplaces as the go-to wireless option for smart buildings and industrial IoT.

In urban contexts, a robust LPWAN solution can connect thousands of endpoints distributed throughout a high-rise building simply with the installation of one base station and an antenna on the rooftop. Now, imagine most large buildings within a certain geographical area is outfitted with such a base station and antenna. By this time, we establish a so-called IoT Metropolitan Area Network where enterprises and even individuals can seamlessly deploy and connect smart devices capitalizing on this infrastructure.

Who Stands to the Benefits of IoT MAN?

An IoT MAN delivers immediate benefits for all businesses, regardless of their sizes, to tap into the tremendous opportunities of IoT and smart buildings. For a commercial real estate company, the business case of implementing a dedicated LPWA network to add IoT functionality to its large-scale properties is quite evident. However, mid-sized enterprises or retailers who only own a moderate office and store area within a bigger building complex might struggle to quickly gain Return-on-Investment (ROI) and justify such a network investment in economic terms. That being said, the substantial benefits of smart solutions with examples like remote monitoring of space usage, shop traffic or storage conditions of perishable products, are not to be missed.

An IoT MAN fits perfectly in this context by delivering a readily available wireless infrastructure to make IoT accessible for every firm and achieve economies-of-scale. Any enterprise can easily hook their sensor devices to IoT without the hassle of procuring, installing, commissioning and managing the network infrastructure. The high upfront capital cost is replaced with a modest usage-based monthly subscription fee, thereby accelerating ROI.

From Smart Buildings to Smart Cities and Consumer IoT

Deployed on a greater scale of an entire metropolis, IoT MAN promises just the same advantages for a wide range of consumer IoT and smart city applications. Municipalities can leverage pervasive low power wireless connectivity at minimum deployment complexity to fuel city-wide intelligent infrastructure. Environmental metering, waste management, leak detection, smart parking and traffic management are just a few out of many smart city pillar use cases that can benefit from an IoT MAN. By the same token, individual citizens can enjoy unprecedented conveniences of connected life at affordable prices with smart solutions for pet and luggage tracking, connected home alarms, or fall detection and remote health monitoring of seniors.

Wireless Considerations for an IoT MAN

LPWAN is the perfect wireless choice for IoT MAN as it delivers exactly what a new breed of smart use cases requires. The long range and deep penetration traits of LPWAN are particularly pertinent in dense urban settings to enable reliable communications of outdoor, indoor, and even underground endpoints. Likewise, low costs and excellent power efficiency make it feasible to connect physical devices of all sizes and classes for tracking and monitoring purposes.

Having said that, there are other vital network considerations, not all LPWAN solutions can cater to. The exponential growth of connected sensors and data traffic in the sub-gigahertz license-free spectrum is posing serious Quality-of-Service challenges. To ensure future-proofed network operations and seamless integration of new devices into the IoT MAN infrastructure, interference immunity and scalability of the underlying technology are top of mind. In parallel, reliable mobile communication is paramount to capture numerous high-value use cases that involve moving assets and people.

In short, the notion of a Metropolitan Area Network is no longer limited to the idea of ready internet access for city residents. Today, innovative LPWAN technology is giving rise to next-gen IoT MAN that is poised to deliver on the promise of omnipresent and immediately accessible and consumable wireless connectivity. It empowers enterprises, municipalities and citizens to turn IoT and its boundless opportunities into reality at reduced costs, time and complexity.

[addtoany]

Get Our Monthly IoT Blogs Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”749b58f9″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Build Next-Gen IoT Metropolitan Area Networks with MYTHINGS

Smart Building Connectivity: 3 Myths Busted

Smart Building Connectivity

BehrTech Blog

Smart Building Connectivity: 3 Myths Busted

[addtoany]

Smart building value lies in the ability to tap into unprecedented amounts of data that empower real-time, intelligent decision making. Achieving this requires a robust and versatile communications infrastructure that can support both existing and future use cases.

But while the importance of smart building connectivity is evident, today’s bewildering variety of technology options often makes the wireless decision a challenging task for property owners. Worse, the intricate technology picture leaves plenty of room for misconceptions around the wireless architecture, specifically its design and functionality. In this week’s blog, we highlight three common myths that should be put to rest.

[bctt tweet=”The intricate technology picture leaves plenty of room for misconceptions around smart building connectivity. Here are three myths that should be put to rest.”]

1. Smart Building Connectivity Is All About 5G and Wi-Fi 6

Since their introduction, 5G and Wi-Fi 6 have constantly hit the headlines across the tech world. Given the prevalence of cellular and Wi-Fi connectivity in both the built environment and our daily lives, smart buildings are unsurprisingly discussed as a key application area. All hype aside, it’s important to soberly assess what role these technologies have to play in the intelligent architecture. Certainly, 5G and Wi-Fi are essential for high-throughput, high-speed data transfer of growing digital amenities like building intranets, video conferencing, digital signages, and augmented/virtual reality services in commercial settings. However, human-to-human broadband communication is only part of the smart building story.

The drastic uptake of modular wireless sensors that deliver fine-grained visibility into virtually every aspect of facility operation is at the heart of the IoT for smart building revolution. Think of examples like environmental sensors, leak detectors or occupancy sensors. These devices primarily send small amounts of data periodically or when abnormal events arise, so high-bandwidth communication isn’t necessary. Instead, what matters much more is power-efficient, scalable and robust machine-to-machine connectivity that can support a constantly growing endpoint base that often numbers in the thousands, if not hundreds of thousands. Here, the newer Low Power Wide Area Networks (LPWAN) is quickly gaining a foothold.

Smart Building Connectivity
Example Applications of IoT for Smart Buildings

Long story short, the diversity of smart building applications is vast and growing by the day. As such, both traditional broadband networks and emerging low-power IoT connectivity will need to co-exist in the wireless architecture to harness all this transformation has to offer.

2. Wireless IoT Will Replace Legacy Wired Building Systems

Almost every large, high-rise commercial buildings nowadays have one or multiple building automation systems (BAS) currently implemented. These systems are largely connected using wired protocols to control key building functions like HVAC, lighting, security, fire safety and elevators. As the IoT and the vision of limitless device interconnection come on the scene, many envisage that the new generation of IoT sensors and wireless connectivity will soon supersede the legacy cabling networks. Nevertheless, this isn’t that simple.

For decades, the physical wire infrastructure has been carefully installed and commissioned to provide the ultra-reliable backbone communication fundamental to automation and control of mission-critical BAS components. And, it isn’t likely to be ripped and replaced any time soon. Having said that, existing BAS operations are far from efficient. Due to the high cost and complexity of running cables, these systems only incorporate a handful of input devices, thus missing out on many critical parameters needed for optimal equipment regulation.

Wireless IoT is added to the smart building connectivity mix to exactly overcome this challenge. Rather than replacing the wired infrastructure, it overlays a new sensor communication network to collect granular in-building data like air quality and human presence – not previously possible. Integrating this information into legacy BAS enables responsive and distributed equipment control that takes into account dynamic building conditions and tenant behavior. This, in turn, brings new levels of efficiency, comfort and sustainability.

3. Home Automation Networks Are Easily Transferrable to Smart Building Deployment

Mesh protocols like Zigbee and Z-Wave have been widely implemented in personal or home area networks, typically for use cases like light and switch control. Their success in home automation has paved the way for their potential use in commercial buildings – with connected lighting being a flagship application. As IoT and smart building technology take off, many expect that wireless mesh networks will quickly extend their reach to incorporate numerous other connected use cases in the built environment. This bullish vision could likely be the reality, if it wasn’t for some important technical considerations that we need to factor in.

The mesh topology works perfectly in small-scale home settings where there are only a handful of connected devices. Nevertheless, in a smart building scenario, the building size and structure is more complex by orders of magnitude. Plus, there are a greater number of vastly distributed endpoints. To offset the short radio link, mesh devices must be evenly allocated close to each other and extra repeaters will most likely be required for seamless coverage. As most nodes are also responsible for passing along data of other devices, their power consumption can greatly increase, and any single point of failure threatens to impact network stability. In large-scale implementations, the setup and management overheads of mesh solutions can far exceed those of star topology networks like LPWAN.

The bandwidth challenge is another critical issue to look into. With most mesh protocols operating in the crowded 2.4 GHz band, their transmissions are subject to significant interference from legacy Wi-Fi and Bluetooth systems. Even if the network can survive the 2.4 GHz traffic for now, what happens if new sensors are constantly added over time? Amidst fast-evolving technology landscape and tenants’ needs, the scalability and futureproofing of smart building connectivity must be thought out from the get-go.

Takeaways

To sum it up, with so many technologies on offer, it’s often challenging for property owners to grasp what the communication architecture should look like. Besides the established backbone wired infrastructure and traditional enterprise wireless broadband communications, low-power wireless IoT is joining the smart building connectivity mix to target an entirely new host of high-value intelligent use cases.

LPWAN, in particular, delivers deep indoor penetration, easy implementation and ultra-low power consumption needed to scale with a new breed of low-computing and battery-operated IoT sensor devices. As opposed to intricate mesh networks with trees and sidearms, a robust LPWAN solution requires as few as a single base station to connect thousands of dispersed endpoints across the entire building – using the simple star topology. What’s more, LPWAN’s use of sub-GHz frequencies helps circumvent heavy interference from legacy building wireless systems in the 2.4 GHz band, to better ensure network reliability in the long run. At the end of the day, the wireless decision can make or break your smart building architecture.

[addtoany]

Get Our Monthly IoT Blogs Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”b5e36912″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Smart Building Transformation: Reaping the Benefits of IoT with Intelligent Infrastructure

smart building transformation

BehrTech Blog

Smart Building Transformation: Reaping the Benefits of IoT with Intelligent Infrastructure

[addtoany]

Contemporary commercial buildings are undergoing a major transformation. Once simply seen as places to work and live, buildings are now becoming digitally connected spaces where human and technology converge and interact in previously unimaginable ways. The tidal wave of the Internet of Things (IoT) along with a new breed of technologies is paving the way to the smart building transformation. Smart buildings leverage cutting edge IoT innovations to collect data on virtually every aspect of building operation, converting them into business intelligence and unlocking transformational value for property owners, facility managers and building occupants alike.

[bctt tweet=”For those looking to start down the smart building path, this white paper will help you prepare and position yourself to reap the enormous potential of the transformation ahead.”]

As the first step towards intelligent, connected buildings, property owners and CRE companies must look beyond traditional civil engineering to architect a robust network and data infrastructure through digital engineering. With the smart building market ceaselessly evolving adapt to changing stakeholders’ needs and larger socio-economic movements, being able to respond to current and future market trends and requirements is a vital requirement. In this context, choosing the right wireless technology is paramount to seamlessly incorporate innovative IoT use cases and smart devices that emerge down the road.

For those looking to start down the smart building path, our latest white paper will help you prepare and position yourself to reap the enormous potential of the transformation ahead. This paper explores the many benefits of smart buildings for stakeholders and outlines the key building blocks of intelligent infrastructure, so you can better navigate the technology landscape and design your own architecture. Furthermore, it walks through ongoing industry trends and applications, including a real-world example of a global commercial real estate (CRE) company embarking on smart building initiatives to deliver enhanced value for its tenants.

Download the White Paper here

[addtoany]

Get Our Monthly IoT Blogs Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D4%22%7D” unique_id=”8bef8b6e” pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

IoT for Smart Buildings: 5 Trends You Can’t Ignore

IoT for smart buildings

BehrTech Blog

IoT for Smart Buildings: 5 Trends You Can’t Ignore

[addtoany]

Smart buildings are at the cutting edge of commercial real estate innovations. Much of this revolution is predicated on unprecedented data influxes brought by the Internet of Things (IoT) that reveal fine-grained insights into previously unknown aspects of building operations. By marrying IoT data with existing building systems and other data sources, a smart building brings new levels of automation and command and control.

Having said that, IoT for smart buildings isn’t a pure technological concept. As much as a rock-solid digital foundation, forward-thinking property owners understand that they first need a well-articulated strategy and vision that act as the guiding light for their long-term smart building initiative. Knowing what the business cases are and where to harness the most value lays the groundwork for all technical implementation that follows.

For owners to better define and position their smart building strategy, in this blog, we identify five trends and applications that are dominating the market.

[bctt tweet=”For owners to better define and position their smart building strategy, we identify five trends and applications that are dominating the market.”]

1. Tenants’ Wellbeing and A Safe Return to Work

Building management used to be almost synonymous with energy efficiency. Yet, with the emergence of modern building standards like WELL, there has been a renewed focus on tenant health and wellness in the built environment. Particularly in the wake of the COVID-19 quarantine, reassuring employees’ safety for a confident return to work is now more important than ever.

Constant monitoring of indoor climate conditions is crucial to maintain a comfortable, productive and personalized environment for occupants. As such, the ability to track diverse environmental variables – from temperature and relative humidity to air, lighting and sound quality – in real-time and with granularity is quickly gaining momentum. Concurrently, in the pandemic era, occupancy sensing is deemed to provide multi-purpose data for growing use cases like usage-based sanitation, traffic control and in-building navigation, to optimize hygiene and ensure safe physical distancing for visitors and tenants.

2. Agile Smart Workspace

Emerging work trends like activity-based working, remote work and co-working have taken the world by storm. And their prevalence only amplifies following the global health crisis. As businesses are embracing new ways of working and changing employees’ priorities, the modern workplace is poised to evolve.

IoT occupancy and traffic flow data allows firms and building owners to effectively gauge how different areas of the office space are being used. Armed with this information, they can make informed decisions on space layouts to maximize utilization while sparking innovation and collaboration. Specifically, organizations can better rightsize meeting rooms and configure the optimal mix between open, cooperative space and individual, focus zone – based on actual demand. Likewise, innovative models like hot desking or flex space can be introduced to increase space efficiency and fulfill the need for more fluid, agile work settings.

3. Smart Energy Management

The quest for higher energy efficiency in building operations shows no sign of slowing down, amidst rising utility costs and environmental challenges. As governments around the world continue to set ambitious energy conservation targets in an effort to reduce global carbon footprint, smart building technology promises to play a central role.

Many commercial buildings today succumb to significant energy waste caused by unnecessary HVAC and lighting activities. Using IoT data as a feedback loop, greater efficiency can be achieved with decentralized, on-demand equipment control that takes into account occupants’ behaviors and preferences, alongside real-time indoor conditions at discrete zones. Concurrently, wireless sub-metering systems offer granular insights into electric, water and gas consumption to uncover abnormal usage trends and determine waste sources.

4. Predictive Maintenance and Asset Digitization

According to the EU Community Research and Development Information Service (CORDIS), maintenance costs far exceed the construction costs of a building throughout its lifecycle. With that in mind, IoT for smart buildings can reduce maintenance costs by 3 to 9 times by empowering predictive maintenance in replacement of the traditional reactive approach.

Due to the challenge of siloed building automation systems, most facility operators today have little to no visibility into the current conditions of critical assets like air-conditioning units. In this context, next-gen wireless smart sensors can be easily retrofit inside or outside legacy equipment to gather various parameters on its operational status that were unattainable before. Having this data at hand, operators can effectively detect telltale signs of asset failures to schedule maintenance in advance.

For example, abnormal trends in temperature, noise, ammonia and other data points inside a walk-in cooler room indicate impending problems of the freezer, allowing corrective work orders to be timely executed before serious a breakdown happens.

5. Data-Driven Digital Services

The use of IoT data in smart buildings isn’t just limited to owners and facility managers. Beyond on-premises systems, relevant sensor data can be fed into a cloud-hosted platform and retrieved at a tenant experience app, offering exciting opportunities to maximize comfort and productivity with high-value digital services.

The app delivers a channel for tenants to better access to building conveniences and amenities. For example, they can easily find and navigate to available parking spots, receive occupancy updates on common spaces, reserve room and amenities on demand, or get instant notifications of facility issues like water leakage – all via a single user interface. Ultimately, these services play into a frictionless tenant experience to improve engagement and retention.

Final Thoughts

The magic of IoT for smart buildings is that it can be applied across all property classes – from office and retail to residential and campuses. The umbrella applications and value pillars are often repeatable across facilities, allowing CRE companies to maximize return-on-investment of their deployment. Being able to stay on top of major market trends that are happening, property owners can work out their own strategy to ride on the smart building wave.

[addtoany]

Get Our Monthly IoT Blogs Roundup



[vcv_posts_grid source=”%7B%22tag%22%3A%22postsGridDataSourcePost%22%2C%22value%22%3A%22post_type%3Dpost%26amp%3Bpost_status%3Dpublish%26amp%3Bposts_per_page%3D5%22%7D” unique_id=”db724151″ pagination=”0″ pagination_color=”#ffce00″ pagination_per_page=”10″]PGRpdiBjbGFzcz0idmNlLXBvc3RzLWdyaWQtaXRlbSI%2BPGFydGljbGUgY2xhc3M9InZjZS1wb3N0cy1ncmlkLWl0ZW0taW5uZXJ7e2N1c3RvbV9mZWF0dXJlZF9pbWFnZV9oYXNpbWFnZV9jbGFzc19uZXdzX3Bvc3RfZ3JpZF9pdGVtfX0iPjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZS1jb2xvci1iLTMzLTMzLTMzIHZjZS1wb3N0LWRlc2NyaXB0aW9uLS1leGNlcnB0LWNvbG9yLWItMzMtMzMtMzMgdmNlLXBvc3QtZGVzY3JpcHRpb24tLWF1dGhvci1jb2xvci1mZmNlMDAgdmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEtY29sb3ItYi0zMy0zMy0zMyI%2BPGRpdiBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLWltYWdlIiBzdHlsZT0iYmFja2dyb3VuZC1pbWFnZTp1cmwoe3tmZWF0dXJlZF9pbWFnZV91cmx9fSkiPjxhIGhyZWY9Int7cG9zdF9wZXJtYWxpbmt9fSI%2BPC9hPjwvZGl2PjxkaXYgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1jb250ZW50Ij48cCBjbGFzcz0idmNlLXBvc3QtZGVzY3JpcHRpb24tLW1ldGEiPjxzcGFuPlBvc3RlZCA8L3NwYW4%2BPHNwYW4gY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS1tZXRhLWRhdGUiPm9uIDx0aW1lIGRhdGV0aW1lPSJ7e3Bvc3RfZGF0ZV9nbXR9fSI%2Be3twb3N0X2RhdGV9fSA8L3RpbWU%2BPC9zcGFuPjwvcD48aDMgY2xhc3M9InZjZS1wb3N0LWRlc2NyaXB0aW9uLS10aXRsZSI%2BPGEgaHJlZj0ie3twb3N0X3Blcm1hbGlua319Ij57e3Bvc3RfdGl0bGV9fTwvYT48L2gzPnt7c2ltcGxlX3Bvc3RfZGVzY3JpcHRpb25fZXhjZXJwdH19PC9kaXY%2BPC9kaXY%2BPC9hcnRpY2xlPjwvZGl2Pg%3D%3D[/vcv_posts_grid]

Turn IoT for Smart Buildings into Reality